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The self-organized criticality in Ehrenfest’s historical dog-flea model is analyzed by simulating the under-
lying stochastic process. The fluctuations around the thermal equilibrium in the model are treated as ava-
lanches. We show that the distributions for the fluctuation length differences at subsequent time steps are in the
shape of a q-Gaussian �the distribution which is obtained naturally in the context of nonextensive statistical
mechanics� if one avoids the finite-size effects by increasing the system size. We provide clear numerical
evidence that the relation between the exponent � of avalanche size distribution obtained by maximum-
likelihood estimation and the q value of appropriate q-Gaussian obeys the analytical result recently introduced
by Caruso et al. �Phys. Rev. E 75, 055101�R� �2007��. This allows us to determine the value of q-parameter a
priori from one of the well-known exponents of such dynamical systems.
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The term self-organized criticality �SOC� was first intro-
duced by Bak, Tang, and Wiesenfeld �BTW� in 1987 �1�. In
their well-known paper, the so-called BTW sandpile model
was used to demonstrate that the dynamics which gives rise
to the power-law correlations seen in the nonequilibrium
steady states must not involve any fine tuning of parameters.
Namely, systems under their natural evolution are driven at a
very slow rate until one of their elements reaches a threshold,
i.e., statistically stationary state, and this triggers a burst of
activity �avalanche� which occurs on a very short-time scale.
When the avalanche is over, the system evolves again ac-
cording to the slow drive until a next avalanche is triggered.
The activity of the system in this way consists of a series of
avalanches. There are many systems where the SOC para-
digm has been applied, e.g., earthquakes, noise with 1 / f
power spectrum, brain activity, river networks, biological
evolution of interacting species, traffic jams etc. �2�.

Following the BTW sandpile model a great variety of
models from the deterministic and stochastic to the dissipa-
tive and conservative have been introduced which exhibit the
phenomenon of SOC �for an overview, see �3� and references
therein�. In 1996, a random neighbor version of the original
BTW sandpile model was presented by Flyvbjerg �4�. In this
work, it was emphasized that a self-organized critical system
is a driven, dissipative system consisting of a medium �sand-
pile� which has disturbance propagating through it, causing a
modification of the medium, such that eventually the me-
dium is in a critical state, and the medium is modified no
more. Moreover, it was shown by way of random neighbor
sandpile model that a dynamical system with only two de-
grees of freedom can be self-organized critical and as it is the
case in fluctuation phenomena, the dynamics is described by
a master equation which can be partially solved analytically.

Soon after Flyvbjerg’s work Nagler et al. studied the con-
servative variant of random neighbor sandpile model which
is neither extended nor dissipative with regard to the amount

of sand in the system but still shows SOC with nontrivial
exponents �5,6�. This kind of analysis is not restricted to
nonspatial systems and available also for spatial systems
such as one-dimensional cellular automata �7�. The dynamics
of the model described by Nagler et al. is given on a Fokker-
Planck equation by introducing appropriate scaling variables.
The avalanche size distribution which is readily obtained by
solving the Fokker-Planck equation at an absorbing bound-
ary exhibits a power-law regime followed by an exponential
tail. Their model is an adaptation of the famous dog-flea
model introduced by Ehrenfest in 1907 �8�. The dog-flea
model is a simple but typical example of generation-
recombination Markov chain �9� describing the process of
approaching an equilibrium state in a large set of uncoupled
two state systems together with fluctuations �avalanches�
around this state. For an even number of states, the transition
probability of fluctuations of the discrete time version was
calculated by Kac �10� �see also �11��. An identification of
the model as a random walk on a Bethe lattice is studied in
Ref. �12�. Furthermore, it has recently been shown that the
dog-flea model, formulated as a continuous time Markov
chain, is a representation of a spin in a magnetic field �13�.
Such a representation is used to estimate the blocking tem-
perature in molecular nanomagnets �14�.

In this work, we will be analyzing the SOC in the dog-flea
model through simulation of the underlying stochastic pro-
cess that describes the natural evolution of the model. The
analysis method that we use has recently been presented by
Caruso et al. to interpret the SOC in the limited number of
earthquakes �up to 689 000� taken from World and Northern
California catalogs for the periods 2001–2006 and 1966–
2006, respectively �15�. Using the same line of thought, it is
our aim to analyze the SOC feature of the dog-flea model
through the time series of the fluctuation length. The simplic-
ity of the dynamics of the dog-flea model enables us to ob-
tain a large number of fluctuations for different system sizes
in a reasonable computing time �i.e., we consider up to 2
�109 fluctuations�. Thus, the obtained critical exponents for
the model are very precise as it will be discussed in coming
sections. This analysis enables us to accomplish our main
task, which is to provide the first rigorous numerical example
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where the relationship, proposed by Caruso et al., between
the exponent � of avalanche size distribution and the q value
of appropriate q-Gaussian �the distribution which is obtained
naturally in the context of nonextensive statistical mechan-
ics� �16�. This will be very appealing also from nonextensive
statistical-mechanics point of view since this treatment
makes the q parameter to be determined a priori, which is a
situation achieved rarely up to now.

The dynamics of the dog-flea model has simple rules. The
model has N dynamical sites represented by the total number
of fleas shared by two dogs �dog A and dog B�. Suppose that
there are NA fleas on dog A and NB fleas on dog B leading to
a population of fleas N=NA+NB. For convenience, N is as-
sumed to be even. In every time step, a randomly chosen flea
jumps from one dog to the other. Thus, we have NA
→NA�1 and NB→NB�1. The procedure is repeated for an
arbitrary number of times. In long-time run, the mean num-
ber of fleas on both dog A and dog B converges to the equi-
librium value, �NA�= �NB�=N /2 with the fluctuations around
it. A single fluctuation is described as a process that starts
once the number of fleas on one of the dogs becomes larger
�or smaller� than the equilibrium value N /2 and stops when
it gets back to it for the first time. Thus, the end of one
fluctuation specifies the start of the subsequent one. The
length ��� of a fluctuation is determined by the number of
time steps elapsed until the fluctuation ends.

It is straightforward to obtain the master equation of the
process that describes the time evolution of the probability to
find a specified number of fleas on one of the dogs. Assum-
ing that after t steps there are NA�t�=� fleas on dog A, at the
subsequent time step there are only two possibilities, �→�
+1 or �→�−1 with the transition probabilities W��+1 ���
= �N−�� /N and W��−1 ���=� /N, respectively. Then, the
time evolution of the probability P�� , t� to find � fleas on dog
A at time t obeys the following master equation,

P��,t + 1� =
� + 1

N
P�� + 1,t� +

N − � + 1

N
P�� − 1,t� . �1�

Introducing appropriate scaling variables Eq. �1� can be writ-
ten in the form of a Fokker-Planck equation by which the
fluctuation distribution is reviewed analytically �5�.

As it was first demonstrated by BTW sandpile model, a
generic signature of SOC is the presence of a power law as
well as finite-size scaling in the size or the duration distribu-
tion of the avalanches. Recently, a power-law regime follow-
ing an exponential tail in the fluctuation length distribution
for Ehrenfest’s dog-flea model has been reported for a very
limited system size �i.e., N=2500� �5�. In our paper, in order
to analyze the SOC in the dog-flea model through the fluc-
tuation length distribution we simulate the corresponding
stochastic process for seven different values of N, namely,
N=102, 103, 5�103, 104, 105, 106, and 107. For conve-
nience, let us group the first four different system sizes as
“small Ns” and the remaining sizes as “large Ns.” In Fig.
1�a� and 1�b� we plot the distribution of the fluctuation
length time-series ��t� for the small Ns and large Ns, respec-
tively. In order to have good statistics 109 fluctuations for the
small Ns group and 2�109 fluctuations for the large Ns
group have been considered. In both cases the fluctuation
distributions have a power-law regime, P�����−� while in

the small Ns group the power-law regime is followed by an
exponential decay because of the finite-size effect. For the
small Ns group one can control if the fluctuation length dis-
tribution P��� obeys the following finite-size scaling behav-
ior:

P��� �
1

N� f	 �

N	
 , �2�

where f is a suitable scaling function and � and 	 are critical
exponents describing the scaling of the distribution function.
In the inset of Fig. 1�a�, a clear data collapse of P��� is
shown for the small Ns group �i.e., N=102, 103, 5�103, and
104�. This data collapse indicates that the fluctuation length
distributions of small Ns satisfy the finite-size scaling hy-
pothesis very well. The obtained critical exponents are �
�1.517 and 	=1. As it is seen from Fig. 1�b�, these values of
critical exponents are in agreement with the finite-size scal-
ing hypothesis since for asymptotically large N, P�����−�

with �=� /	�1.517. The value of � is obtained by the
maximum-likelihood estimation �MLE� and this method en-
ables us to determine this exponent of the model within the
error bars �1.2�10−5 �17�.

Now we are at the position to introduce the distribution of
returns, i.e., the differences between fluctuation lengths ob-
tained at consecutive time steps, as 
��t�=��t+1�−��t�. It
should also be noted that, in order to have zero mean, the
returns are normalized by introducing the variable x as

x = 
� − �
�� , �3�

where �¯� stays for the mean value of the given data set.
The signal of the distribution of returns reveals very interest-
ing results on the criticality of the dog-flea model. This ap-
proach is used in recent studies on turbulence �18� and the
time-series of real earthquakes �15�.

In Fig. 2, we plot the distribution of the returns 
��t�
obtained from 109 fluctuations for each different system sizes
in the small Ns group �a�, whereas in the group of large Ns
�b� 2�109 fluctuations are considered. What is common for
both cases is that none of them has return distributions which
can be approached by a Gaussian. As the system size N in-
creases, leading to a longer power-law regime in the fluctua-
tion length distribution, the return distribution curves be-
come to exhibit a convergence to a kind of fat tailed
distribution. When the system size is large enough, the ex-
ponential decay of the fluctuation length distribution �see
Fig. 1�b�� is postponed to larger sizes and the finite-size ef-
fects get invisible up to more than four decades. In this case
the distribution of the returns can be fitted by a q-Gaussian
given by

P�x� = P�0���1 + �̄�q − 1�x2��1/�1−q�, �4�
where �̄ characterizes the width of the distribution and q is
the index of nonextensive statistical mechanics �16� �black
full lines in Figs. 2�a� and 2�b��. In Eq. �4�, q�1 indicates a
departure from the Gaussian shape while normal Gaussian
distribution can be recovered again in the q→1 limit. Here,
it is worth mentioning that our results in Fig. 2 clearly show
the connection between criticality and the appearance of
q-Gaussian, namely, wider the critical regime persists, longer
the tails of returns distribution follow q-Gaussian. This kind
of interpretation might also be useful in understanding the
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difference between two recent experimental works on veloc-
ity distributions in optical lattices �19,20�. In �19�, velocity
distributions are found to approach a double-Gaussian shape,
whereas in �20� they are reported to converge to a
q-Gaussian. The reason for this discrepancy seen in the re-
sults of essentially the same experiment might be that in the
latter the system may be set exactly at the criticality, whereas
in the former it is not.

At this point, we should recall the important result re-
ported by Caruso et al. �15� relating the � exponent of the
avalanche size distribution with the q parameter of the
q-Gaussian. As it was emphasized in their work, if there is no
correlation between the size of two events, the probability of
obtaining the difference 
�=��t+��−��t� �� is an integer
describing the correlation length and in our case �=1� is
given by

P�
�� = K
−�2�−1�

2� − 1 2F1	�,2� − 1;2�;−
�
��



 , �5�

where K is a normalization factor,  is a small positive value
and 2F1 is the hypergeometric function. The curve of this �
dependent probability density function P�
�� can be ap-
proached by means of q-Gaussian with -independent q
value. In Ref. �15�, by evaluating Eq. �5� for various values
of �, a relation between the power-law exponent � and q is
reported as

q = e1.19�−0.795
. �6�

Although this relation is obtained in �15� by Caruso et al.,
they could not check its validity since the earthquake data

that they analyzed were not adequate to obtain the � value
with high precision. Consequently, they still used q param-
eter as a fitting parameter. On the other hand, since the
power-law exponent is very accurate in our case, we can
substitute its value ��=1.517� obtained by MLE into Eq. �6�
which gives the q value as q=2.35. This value is obviously
the one that we should use in the q-Gaussian to check
whether the return distribution can be approached by this. It
is worth mentioning here that the q parameter is not a fitting
parameter anymore. In Fig. 2 we also include this result to-
gether with a Gaussian curve for comparison. It is clear that,
for very small Ns, the convergence to q-Gaussian is only in
the central part �see the inset of Fig. 2�a��, whereas it devel-
ops more and more toward the tails as N increases. Eventu-
ally, for large enough Ns for which finite-size effects are
invisible inside the obtained region, the q-Gaussian curve is
perfectly approached including the center and tails.

In order to further strengthen our results, we consider one
of the appropriate system size �N=106� separately in Fig. 3.
A very clear convergence of the return distribution to the
q-Gaussian can be seen everywhere for the available data
�including the very central part, see the inset of Fig. 3�a��.
Moreover, to check how well the obtained q-Gaussian curve
approaches the returns distribution, a log-log plot of Eq. �4�
is given in Fig. 3�b�. A perfect straight line with the slope
1 / �1−q� is the expected behavior for this type of represen-
tation if the curve is an exact q-Gaussian and as it is seen
very clearly, the behavior of the return distribution fulfills
this tendency exhibiting a seven decade power-law with the
slope 1 / �1−q� which gives the already obtained q value, q
=2.35.

We analyze the SOC in Ehrenfest’s dog-flea model
through the probability distributions of the fluctuation length
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FIG. 1. �Color online� Fluctuation length distributions for the
small Ns and for the large Ns groups are given in �a� and �b�,
respectively. In the inset of �a�, we also present data collapse of
finite-size scaling given in Eq. �2� for small Ns group. The critical
exponents derived from the fit are ��1.517 and 	=1. The full
black line in �b� represents the fitting curve of the distribution with
slope ��1.517 which has been obtained by maximum-likelihood
estimation. The distributions have an arbitrary normalization such
that P��=1�=1.
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FIG. 2. �Color online� The distributions of returns, i.e., the fluc-
tuation length differences 
��t�=��t+1�−��t�, normalized by in-
troducing the variable x=
�− �
�� are shown in �a� for the small
Ns group and in �b� for the large Ns group. For comparison, stan-
dard Gaussian and q-Gaussian curves are drawn by black dashed
and full lines, respectively. See text for further details. In insets, the
central parts of the distributions are emphasized.
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�avalanche size distributions� and of the differences between
the fluctuation lengths at subsequent time steps �returns dis-
tributions� by simulating the stochastic process of the model.
Our extensive simulations enable us to determine the power-
law exponent � of the avalanche size distribution with an

extreme precision. Then, the behavior of the returns distribu-
tions is analyzed and numerically shown that it converges to
a q-Gaussian with q=2.35, a value coming directly �and a
priori� from Eq. �6� which makes q parameter to be related
to one of the well-known power-law exponents of such
model systems �which means that q is not a fitting parameter
anymore�. This is the main result of the present paper and
important from �at least� three point of view: �i� this consti-
tutes the first reliable verification of Caruso et al. relation
since, due to insufficient data set of earthquakes, they were
unable to provide clear evidence for their own relation; �ii�
this result is achieved using a simple, prototype SOC model
�different from the one used by Caruso et al.� which can be
considered as the first clue on the generality of these results
rather than being specific only to this model; �iii� this treat-
ment makes the q parameter of the q-Gaussian to be deter-
mined a priori which constitutes a rather rare achievement in
the literature due to technical difficulties. From the analysis
of return distributions from small Ns to large Ns, it is shown
that the convergence to appropriate q-Gaussian starts from
the central part and gradually develops toward the tails as N
increases. This is a kind of expected behavior since, from our
simulations it is also evident that the power-law regimes of
the avalanche size distributions for small Ns are followed by
exponential decays due to finite-size effects and this obvi-
ously deteriorates the true behavior. Of course, for large
enough Ns, this effect is postponed further and further to
avalanche sizes that are not inside the region we are consid-
ering. Moreover, one could conclude that, as N→� the
power-law regime of avalanche size distribution is expected
to continue forever, then the corresponding return distribu-
tion appears to converge to the q-Gaussian for the entire
region. Finally, it is worth to mention that the behavior ob-
served and reported here for the zero dimensional prototype
SOC model of Ehrenfest is by no means specific and limited
to this model, but seems to appear as a rather common phe-
nomenon for several SOC models �21�.
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FIG. 3. �Color online� �a� Distribution of returns for a represen-
tative case of large Ns group �N=106� is given by full green circles.
The q-Gaussian curve with q=2.35 and �=35 is shown by full
black line. This value of the q is obtained by substituting �=1.517
into Eq. �6�. A standard Gaussian curve is drawn by dashed black
line for comparison. In the inset, the central part of the distribution
is given in order to emphasize that the distribution approaches al-
most perfectly to the q-Gaussian not only in the tails but also in the
center. �b� In order to better visualize how well the used q-Gaussian
approaches to the distribution, we plot the same P�x� versus 1
+��q−1�x2. A straight line with a slope 1 / �1−q� is expected for a
perfectly q-Gaussian shaped distribution. Data points �green circles�
and the slope with q=2.35 �black line� constitute clear evidence
toward this tendency.
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